Hydrothermal Synthesis and Characterization of Sodium Dititanium Triphosphate

Yue Yong and Pang Wengin

Department of Chemistry, Jilin University, People's Republic of China

Sodium dititanium triphosphate has been synthesized hydrothermally from the $Na_2O-TiO_2-P_2O_5-P_2O_5-H_2O$ system, and characterized by X-ray powder diffraction and Raman and IR spectroscopy.

 $NaTi_2(PO_4)_3$, which has a NASICON-type structure (space group $R\overline{3}c$) with a three-dimensional network of PO₄ tetrahedra corner-shared with TiO₆ octahedra, has been prepared previously by melting together NaPO₃ and TiO₂,¹ and by other solid-state reactions.² However, there have been no reports of a hydrothermal synthesis. We report here a novel method, hydrothermal crystallization, for the synthesis of $NaTi_2(PO_4)_3$.

Hydrothermal crystallization of $NaTi_2(PO_4)_3$ was carried out in a stainless steel autoclave with a Teflon liner under

Figure 1. X-Ray powder diffraction pattern of the product.

autogenous pressure. TiO₂ (anatase), 85% orthophosphoric acid, and NaOH solution (2 M), a mineralizer, were mixed in the molar ratio 4 Na₂O:0.5 TiO₂:12 P₂O₅ in the Teflon liner. The autoclave was sealed and heated in an oven at 250 °C for 5—7 days. After cooling, the product was filtered, washed with distilled water, and dried at ambient temperature. The crystalline product was identified by means of X-ray powder diffraction and IR and Raman spectroscopy.

The X-ray powder diffraction pattern of the product (Figure 1), recorded with a Rigaku D/MAX-IIIA diffractometer using Cu- K_{α} ($\lambda = 1.5418$) radiation, is similar to that of NaTi₂(PO₄)₃ obtained from solid-state reactions by others.³ The product is free of TiO₂ and other impurities. The Raman spectrum (Figure 2) was recorded on a Ramanor SPEX 1403 double spectrometer with an argon-ion laser (488.0 nm line, 100 mW). The spectrum is unique and quite characteristic of NaTi₂(PO₄)₃⁴ with a strong peak at 1010 cm⁻¹, and weaker peaks at 432—194 cm⁻¹. The IR spectrum shows absorption bands at 500—660 cm⁻¹ and 900—1200 cm⁻¹, which are attributed to PO₄ bending and stretching vibrations. The absorptions at 1645 and 3450 cm⁻¹ could be assigned to the vibrations of water and (OH)⁻,¹ respectively.

DTA-TG (differential thermal analysis-thermogravimetric analysis) shows that $NaTi_2(PO_4)_3$ synthesized hydrothermally was stable at 1200 °C. TG curves show that 7.8% of the weight

Figure 2. Raman spectrum of the product.

is lost continuously when the sample is heated from room temperature to 1200 °C. After heating, the water bands disappear in the IR spectrum. Therefore it seems that $NaTi_2(PO_4)_3$ synthesized hydrothermally contains a small amount of water which is probably zeolitic in nature.⁵

In summary, a new method for the synthesis of $NaTi_2(PO_4)_3$ by hydrothermal crystallization is reported. The product is the same as that of the solid-state reaction and contains a little zeolitic water.

Received, 13th December 1989; Com. 9/05305K

References

- 1 G. Wunder, J. Drakt. Chem., 1871, 4(2), 339.
- 2 L. O. Hagman and P. Kierkegaard, Acta Chem. Scand., 1968, 22, 1822.
- 3 M. C. Morris, H. F. McMurdie, E. H. Evans, B. Paretzkin, H. S. Parker, N. P. Pyrros, and C. R. Hubbard, 'Standard X-ray Diffraction Powder Patterns,' National Bureau of Standards, Monograph 25, vol. 19, 1982, p. 79.
- 4 C. E. Bamberger and G. M. Begun, J. Solid State Chem., 1988, 73(2), 317.
- 5 A. Clearfield, P. Jirustithipong, R. N. Cotman, and S. P. Pack, Mat. Res. Bull., 1980, 15, 1603.